Backpaper - Differential Equations (2018-19)

Time: 3 hours. Attempt all questions.

- 1. Find the general solution of $u'' + 2u' + u = e^{-x}$. [5 marks]
- 2. Find the general solution of 4xu'' + 2u' + u = 0. [5 marks]
- 3. Find the general solution of

$$\begin{cases} \frac{dx}{dt} &= x+y\\ \frac{dy}{dt} &= 4x-2y \end{cases} \quad [5 \text{ marks}]$$

- 4. Solve for u = u(x, y) in the PDE $(1 + x^2)u_x + u_y = 0$. [5 marks]
- 5. Solve the heat equation $u_t = ku_{xx}$ for $-l \le x \le l$, t > 0, with periodic boundary conditions [i.e. u(-l,t) = u(l,t) and $u_x(-l,t) = u_x(l,t)$], and initial profile $u(0,x) = \phi(x), -l \le x \le l$. Assume that ϕ is a C^2 (twice continuously differentiable) function. [7 marks]
- 6. Solve $u_{tt} = c^2 u_{xx}$ with $u(x, 0) = e^x$, $u_t(x, 0) = \sin x$. [5 marks]
- 7. Let u = u(x, y) be a harmonic function in the disk $D = \{r < 2\}$ with $u = 2\sin 2\theta + 1$ for r = 2.
 - (a) Find the maximum value of u in \overline{D} . [2 marks]
 - (b) Calculate the value of u at the origin. [3 marks]
- 8. Define the Green's function for the operator $-\Delta$ in a domain D at the point $x_0 \in D$. [5 marks]
- 9. Let $F : I \to \mathbf{R}^d$ be a locally Lipschitz function of at most linear growth, that is $|F(u)| \le C(1+|u|)$ for some constant C. Show that for each $u_0 \in \mathbf{R}^d$ and $t_0 \in \mathbf{R}$ there exists a unique global solution $u : \mathbf{R} \to \mathbf{R}^d$ to the Cauchy problem $\partial_t u(t) = F(u(t)), t \in \mathbf{R}; u(t_0) = u_0$. [8 marks]